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SUMMARY

Based on a mixed variational principle and the finite
element method, a model for efficiently generating mass-
consistent wind fields over continuous terrain has been
developed. Two numerical examples are presented to
demonstrate the applicability of the model.

I. INTRODUCTION

As part of the modernization efforts of the Atmospheric
Release Advisory Capability (ARAC) project, we have
developed a new diagnostic model for generating mass-
consistent wind fields over continuous terrain. Such wind
fields can be used to drive ARAC's new dispersion model
LODI!. This model is going to replace our current
operational code MATHEW?, which uses stair-step
topography and constant grid spacings.

Our new model is based on a mixed variational
principle and the finite element method (FEM) for spatial
discretization. Two conjugate gradient solvers are
implemented for efficiently solving the Poisson equation
resulting from the numerical formulation. The finite element
method is employed to effectively treat continuous terrain
and variable grid resolution. It is based on a grid-point
representation of the wind fields in contrast to the flux-
based, staggered grid representation often used in finite
difference approaches. Additionally, the model offers a very
flexible treatment of boundary conditions and the ability to
preserve velocity at desired grid-points for cells in which
wind observations are located. Also included in our model
are map projection factors and differential weighting for the
horizontal and vertical velocity adjustments to reflect the
effects of atmospheric stability.
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II. NUMERICAL MODEL
A. Governing Equations

The underlying theoretical basis of our model, with the
assumption of constant density, is the following functional,
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In the above equation, (#,7,%) and (u, v, w) are the
components of the initial and adjusted velocity fields, A4 is
the Lagrange multiplier, @, and a, are the Gauss precision
moduli, and € is the domain under consideration.
Equation (1) is a mixed variational principle® for which the
solution (u, v, w; A) is a saddle point, rather than an
extremum point. The solution corresponds to a minimum
with respect to the difference between the adjusted and the
initial velocity fields and a maximum with respect to the
Lagrange multiplier. With this approach, the mass-
conservation requirement will be enforced as a strong
constraint.

It can be shown that the solution of (1) via taking
6l = 0 leads to the following Euler-Lagrange equations,
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in Q, and

l&l“ =0 (4)

on the boundary. In equation (4), du, is the first variation of
the adjusted velocity in the normal direction. This equation
implies that, on the boundary, either

ou, =0 or A=0.

The former corresponds to a boundary where the normal
velocity is specified, such as u, =i, on an inflow plane or
u, =0 on a solid boundary, while the latter corresponds to
“flow through" boundaries (which is a natural boundary
condition for the velocity).

B. Finite Element Discretization

The FEM with piecewise polynomial basis functions is
used for spatial discretization of (1). Specifically trilinear
functions defined on a general hexahedron are used for the
velocity and piecewise constants are used for the field of
Lagrange multiplier. Upon using the above approximations
and setting &7 =0, a coupled system of algebraic equations
is obtained,

MU +CA= MU ®

and

c’u=0 ©

In the above equations, U is a vector containing all the
nodal values of (, v, w), U is a vector for Sﬁ, ﬁ,ﬁ"), and A
is a vector for the Lagrange multiplier of all elements. M is
the mass matrix of size 3n x 3n, C is the gradient matrix of
size 3n x m, and CT, the transpose of C, is the divergence
matrix. There are n nodes for the velocity and m elements
for A. Alternatively, equations (5) and (6) could be obtained
by applying the Galerkin method of weighted residuals to
(2) and (3) and integrating by parts the terms involving 1.

Equations (5) and (6) could, in principle, be solved as a
coupled system. However, such an approach may prove
impractical for large problems, due to excessive memory and
CPU requirements. We implemented a cost-effective
alternative developed by Gresho et al.4, which uses, in place
of the original consistent mass matrix, a lumped (via row-
sum) mass matrix (denoted below as M), and solves the
following equivalent uncoupled system,

(c’u;‘c)z.: cTU m
and

U - U- M;‘cx. ®

To efficiently solve large linear systems of equations
such as (7), we use the incompiete Cholesky-conjugate
gradient (ICCG) method of Kershaw® and the diagonally
scaled conjugate gradient (DSCG) method.

C. Treatment of Terrain

One of the advantages of the finite element method is
that all calculations are carried out directly in the physical
space of (x, y, z), although our input/output data are
associated with the (x, y,oz) coordinate system. Such an
approach can save computational time and, more
importantly, guarantees that the resulting wind field is
mass-consistent in the physical space. To impose the
boundary condition of no-penetration on the ground surface,
local transformation matrices of size 3 x 3, which relate the
Cartesian velocity components to those in the local
normal/tangential directions, are first evaluated for all nodes
on the terrain surface. These transformation matrices, defined
by the direction cosines of the consistent normal direction
derived by Engleman et al.® are then incorporated into the
global gradient and divergence matrices (C and C7), thus
allowing a direct computation of velocity components in the
local normal/tangential directions and the specification of
zero normal velocity component on the ground surface.

. NUMERICAL EXAMPLES
A. Flow Around a Hemispheric Hiil

To test the accuracy of our model, we calculated the
potential flow around a hemispheric hill. The analytic
solution for this problem, in terms of the velocity potential
function, is

d>=u,,x(l+ro3/2rs), rzr, ©

in which u, is the free stream velocity and 7, is the radius
of the hill. The velocity components corresponding to (9)
are

u= u,,[1+(y2+z2 -2x2)r3 /2r’]

v==3u,xr’ /2r° (10)

w = 3u,xzr} /20

In the numerical simulation, a hemispheric hill of
radius 1 km was placed in the center of a computational
domain of 5km x 5km x 2km in the downwind, crosswind,
and vertical directions, respectively. The computational
mesh (or grid) consists of 50 x 50 x 30 elements (or Zones)
and the mesh is basically uniform in the two horizontal
directions and gradually graded in the vertical direction,
with finer zones near the ground. To account for the




relatively short distance from the inflow plane to the hill,
exact velocity compo nents as defi _ner_l in (10} were spe-iﬁed

surface and the ‘-ﬂow—through’ bo{mdary condition was
assumed on all the remaining boundaries. A uniform wind
of u,=I m/s was used as the initial guess. The entire
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smiulation took 26 sec on a DEC Alpha machine.

In Fig. 1, mass-consistent velocity vectors on the center
plane and the 100-m horizontal plane are displayed. The
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wind field exhibits the stagnatuon points at the front and the
rear of the hi}} and shows the potential flow following the
surface of the hill. The predicted maximum speed at th
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The 0.15 m/s speed deviation contour (which
corresponds to 10% of the theoretical maximum speed) from
the exact solution is shown in Fig. 2. Most of the
computauonal domain has speed deviations less than 0.15
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Fig. 2. The contour of 0.15 m/s speed deviation from exact

soiution

the solution is much higher; the root-mean-square error of
the speed deviations for the entire domain is only 0.032
m/s,

B. Application for the San Francisco Bay Area

In this example, our model is applied to generate the
wind fields for an emergency response scenario in the San

Francisco Bay Area, using interpolated wind data from the

new ARAC metecralogica} database (see Sugiyama and
Chan’). The grid is 100 km by 100 km by 3 km, with 81
grid points in each horizontal direction and 31 grid points

in the vertical direction. The gnd has 10 m vertical
resolution near the ground. The entire simulation took 87
sec on a DEC Alpha machine,

Fig. 3 shows the mass-consistent wind vectors on the
10 m AGL plane, together with the surface observations
(plotted within the circles). In general, only small changes
were made to the initial winds by the mass-adjustment
model. In Fig, 4 wind vectors on the y-Z p!ane in the
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components scaled by a factor of 10. The variable grid
employed and the terrain following adjusted ve!ccit}' vectors
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can be seen in this figure. The magni
wind induced by the topography is not veny
consistent with the small changes observed above for the
horizontal winds.
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Fig. 3. Mass-consistent surface wind filed at 10 m AGL,
Every third vector is plotted. Surface wind
observations are plotted within the circles.
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Fig. 4. Wind vectors on the cross wind plane at x = 570 km

IV. CONCLUSION

A new model based on a mixed variational principle
and the FEM has been developed for efficiently generating
mass-consistent wind field over continuous terrain. Results
from our early testing and applications indicate that the
model is robust and sufficiently fast for real-time assessment
purposes. The mode! will be further evaluated in practical
applications using measured data and forecast fields.
Additional physics and parameterizations, including spatial
variations of the Gauss precision moduli depending on
atmospheric and topographical conditions, will be
implemented in the near future.
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